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Introduction

Temporal processing (timing) is a crucial aspect of human cognition due to the inherently

temporal nature of the environment with which we consciously and unconsciously interact

(Lashley, 1951). Dynamic events--such as speech, movement, and social interaction--would

become incomprehensible if one were to lack the ability to process the temporal sequence,

spacing, and duration of sensory stimuli. It is therefore of particular interest for scientists to

investigate temporal processing in the brain. Prior efforts have attempted to quantify temporal

processing ability through either behavioral or neural indices. For example, Duzcu et al., 2019

examined brain evoked potentials in response to periodic stimuli, while Thompson et al., 2015

investigated sensorimotor synchronization (SMS) ability through finger-tapping tasks.

However, neural indices elicited by perception of temporal information lack behavioral

representation and cannot support ecological interpretations of individual timing ability;

behavioral indices like SMS better represent individual timing ability, but intrinsically involve

both a neural and a motor component; accordingly, individual differences in individual timing

ability need to be disentangled from individual differences in motor ability.

Therefore, it could be enlightening to explore temporal processing ability incorporating

both behavioral and neural responses. A study completed by graduate student D’Andrea-Penna

and colleagues (2020) suggested a new paradigm that probed timing ability, correlating

behavioral and neural indices acquired from separate tasks involving rhythmic stimuli and/or

behavior.

Specifically, D’Andrea-Penna and colleagues examined the N1-P2 complex, an emitted

P300 (“omission-evoked potential,”) and a possible “metric negativity,” which are demonstrated
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by previous research to be modulated by temporal expectancy (Besson et al., 1997; Besson and

Faita, 1995; Duzcu, 2019; Duzcu et al., 2019; Jongsma et al., 2004; Kononowicz and van Rijn,

2014; Lange, 2009; Menceloglu et al., 2020; Picton and Hillyard, 1974; Rothermich et al., 2010;

Rothermich et al., 2012; Ruchkin et al., 1980; Ruchkin and Sutton, 1978; Schafer et al., 1981;

Stekelenburg and Vroomen, 2015; Todorovic and de Lange, 2012) and, therefore, are treated as

candidates for electrophysiological markers of timing ability. They found that subjects who

generated larger N1-P2 amplitudes in response to inserted irregular beats in a sequence of

periodic beats, during passive listening, performed better in a sensorimotor synchronization task

in which they tried to synchronize their finger tapping with externally played isochronous beats.

This particular paper reports a follow-up study based on the above-mentioned findings by

D’Andrea-Penna and colleagues. The new study investigates the relationship between baseline

brain activation state, which we hypothesize may affect the efficacy with which auditory stimuli

are processed, and, correspondingly, the N1-P2 amplitude in response to unexpected stimuli,

which appears to predict performance on a solo-tapping task. To evaluate this hypothesis, we will

use electroencephalography (EEG) to examine the resting-state oscillatory activity along with the

N1-P2 component generated during a passive listening task.

Background

Electroencephalographic (EEG) experiments that examined timing and rhythmic ability

found that the N1-P2 complex is modulated by temporal expectancy (Schafer et al., 1981; Lange,

2009; Todorovic and de Lange, 2012; Kononowicz and van Rijn, 2014; Duzcu, 2019; Duzcu et
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al., 2019; Menceloglu et al., 2020). The N1-P2 complex is an auditory evoked potential elicited

by stimulus onsets, offsets, and changes in quality that objectively reflect the conscious detection

of any discrete change in the auditory environment and indicates early sensory processing

(Näätänen, 1990; Remijn et al., 2014; Hyde, 1997). It has been used as an objective predictor of

auditory threshold in adults and older children since the late 1960s (Lightfoot, 2016). It is also

possibly modulated by top-down attention-related mechanisms (Hillyard et al., 1973;

Parasuraman, 1978). In addition, Näätänen, 1990 reports that N1 amplitude may correlate with

the subjective perception of stimulus obtrusiveness with larger amplitudes suggesting greater

obtrusiveness, indicating a possible relationship between N1 amplitude and conscious evaluation

of stimulus quality.

The activation state of the cortex is proposed to influence the fidelity of sensory inputs

and resolution of perceptual processing (Harris & Thiele, 2011). For example, modulating the

cortex through stimulating cholinergic projections has been shown to desynchronize the cortex,

presumably inducing activity that is of lower amplitude and higher-frequency; this “activated”

cortical state leads to improved processing of visual information (Minces et al, 2017, Bauer et al,

2012). Typically, this shift in cortical state also accompanies the emergence of more gamma

frequency oscillations (40-150 Hz). Even a single gamma cycle has been proposed to be a

computational mechanism for temporal coding (Fries et al, 2007).

Temporally coordinated neural activity in one brain region could influence activity in

downstream regions due to the temporal summation of neural inputs. Assume multiple upstream

neurons project their axons to one single downstream neuron: if all upstream neurons release

neurotransmitters and stimulate the downstream neuron in close temporal proximity, the
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presynaptic inputs are likely to summate at the soma, generating a larger excitatory postsynaptic

potential (EPSP) and increasing the probability of the postsynaptic neuron firing an action

potential.

From a neural oscillation perspective, the gamma rhythm is a “narrow” rhythm in the

sense that it is characterized by high-frequency oscillations, short wavelengths, and narrow

oscillatory cycles. If a group of neurons demonstrates synchronized firing activity in a gamma

pattern, they would be exhibiting action potentials within small gamma rhythmic windows. On

the other hand, the alpha rhythm, characterized by lower-frequency oscillations, demonstrates

longer wavelengths and wider oscillatory cycles. A group of neurons synchronized in an alpha

pattern would exhibit action potentials within wider temporal windows. Considering that the

effect of temporal summation increases as the interval between inputs decreases, neural activity

synchronized in higher-frequency oscillations and nested in narrower temporal windows should

have a higher probability of eliciting downstream firing activity (Jensen et al., 2007).

Previous studies proposed that gamma synchronization could underlie neurons in

downstream brain regions selectively responding to attended stimuli (Jensen et al., 2007). It was

also found that increases in gamma-synchronized activity correlate with faster reaction time

(Womelsdorf et al., 2006). Benasich and colleagues (2008) found a significant positive

correlation between language/cognitive skills levels, self-control/attentional shift abilities, and

resting frontal gamma power in young children. Through optogenetically inducing gamma

oscillations in the mouse neocortex, Siegle and colleagues (2014) were able to enhance the

animals’ ability to detect sub-salient vibrissal stimuli. Thus, across different species and task



6

demands, the presence of gamma oscillatory activity has consistently been associated with

increases in sensation, perception, attention, and even the development of academic skills.

Consequently, this project aims to evaluate the potential association of resting-state

oscillatory activity recorded during resting or stimulus-free periods of the passive-listening task

to the amplitude of the N1-P2 component generated during active periods of the tasks. We

specifically hypothesize that high-frequency resting-state oscillatory activity in the gamma-band

contributes to the generation of larger N1-P2 amplitude to unexpected stimuli.

Methods - majority adopted from D'Andrea-Penna et al. (2020)

Participants

A total of 4 participants between ages 18 and 24 were recruited from the University of

California, San Diego, CA. One participant was excluded from the analysis due to excessive

noise and artifacts in their EEG data. For efficiency, all sessions were conducted in groups of 2,

but the tasks relevant to this study did not involve interaction between participants.

Stimuli and Procedure - cited from D'Andrea-Penna et al. (2020)

For both the tapping task and passive listening session, participants heard rhythmic

streams of tone bursts from a speaker (~75 dB, sound pressure level). Each burst

consisted of an 800-Hz sine pulse, 50 ms in duration with a 10-ms ramp up and ramp

down to avoid clicks at onsets and offsets. All auditory stimuli and analog triggers were

presented—and tapping recorded—using Adobe Audition with a Focusrite Scarlett 18i20
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audio/digital interface with a sampling rate of 44.1 kHz. Stimulus presentation with a

powered JBL studio monitor introduced a 3-ms latency. The auditory stimuli were sent to

the speaker through one of the output channels of the audio digital interface. On another

output channel, we sent a simultaneous analog trigger. The analog trigger was collected

through one input channel of the audio digital interface, together with the activity from

the piezoelectric elements that were glued to the tapping boards. With this configuration,

the triggers and participants’ actions were collected simultaneously. Thus, the signals that

we used for analysis were synchronized with a precision of one sample (i.e., less than a

millisecond)

Tapping - modified from D'Andrea-Penna et al. (2020)

Participants tapped individually for 1 min to isochronous beats. For the tapping task,

beats were separated by a 600-ms IOI, a relatively comfortable pace for SMS (Repp,

2005). Beats were occasionally omitted (15% probability); however, participants were

instructed to maintain the basic rhythm while tapping and to tap where the beat “should

be,” despite the omissions. Participants tapped onto wood blocks affixed to drums at

approximately lap height, under which piezoelectric sensors were placed to record their

taps as digital audio files into Adobe Audition.
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Figure 1. Passive listening temporal oddball paradigm. Participants passively listen to streams of sounds in 2

conditions. The “long” condition includes isochronous beats that are sometimes interrupted by an unexpected beat

(“deviant”). The “short” condition is twice as fast as the long condition and contains occasional omissions. This

arrangement allows us to compare brain responses with deviants and standards, which are physically the same sequence

of stimuli to control for neural adaptation but vary in temporal expectancy.

Passive Listening - modified from D'Andrea-Penna et al. (2020)

A 30-min passive listening session followed the tapping task. To avoid the confound of

sensory adaptation, in which EP amplitude decreases with shorter IOI’s (Rothman et al.,

1970), we developed a two-condition paradigm consisting of 2 trial types that were

presented alternately 8 times (for a total of 16 trials). The “long condition” used a 800-ms

IOI, with rare extra beats occurring at a 400-ms IOI (halfway between surrounding

800-ms IOI beats, 15% probability). The “short condition” used a 400-ms IOI, with rare
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omissions (15% probability). These 2 conditions strategically allowed for identical

stimulus sequences in which the same 2 IOI’s preceded the key sound to which the

evoked brain response was measured (either an extra beat in the long condition or a

standard in the short condition), controlling for adaptation such that only their expectancy

differed. Henceforth, the extra beats in the long condition will be referred to as “deviants”

and the sequence-matched, expected beats in the short condition will be called

“standards.” Between each super-block (containing one block of the long condition

followed by one block of the short condition - active periods) we inserted 60 s of silence

(resting periods) for baseline EEG data collection.

EEG Acquisition - modified from D'Andrea-Penna et al. (2020)

During passive listening, participants wore custom, 5-channel dry EEG headsets

containing electrodes at Fp1, Fp2, Cz, O1, and O2 (Cognionics; Chi et al., 2013). Two

frontal electrodes served as ground, and EEG data was referenced to the left earlobe. The

headsets employ flexible plastic sensors with tines that penetrate hair to contact the scalp

and active Ag/AgCl electrodes. Each headset was connected to a laptop using a USB

isolator and running Cognionics Data Acquisition software. Cz was positioned

approximately at vertex, and alcohol pads were used to clean participants’ foreheads and

other electrode sites when necessary. Signal quality was inspected prior to recording.

Square-wave triggers, with variable amplitude serving as event codes, were sent into the

headset as analog input and recorded as an additional channel. Data were recorded at

4000 Hz to preserve the onsets of the triggers.
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Analysis - majority adapted from D'Andrea-Penna et al. (2020)

Tapping - modified from D'Andrea-Penna et al. (2020)

Tapping time series underwent a vector strength (VS) analysis, which provided a measure

of each participant’s ability to synchronize with the external rhythm—particularly of their

ability to tap with a consistent phase relative to the driving beat. VS is defined as:

where N is the total number of taps by one participant, ϕj is the tap phase relative to the

driving rhythm for tap number j, and i is the imaginary unit. Accordingly, VS is one if a

tapper is perfectly consistent, maintaining the same phase across taps, and zero if the

participant taps randomly (Khalil et al., 2013).

EEG Preprocessing - modified from D'Andrea-Penna et al. (2020)

EEG data from the passive listening was processed and analyzed using EEGLAB

(Delorme and Makeig, 2004). We used data from Cz, consistent with previous studies

examining the N1-P2 complex (Hillyard et al., 1973; Parasuraman, 1978; Schafer et al.,

1981). After identifying the different types of events (standard and deviant beats) using

the amplitude-coded square waves from the trigger channel, data were downsampled to

500 Hz. A low-pass Hamming windowed sinc finite impulse response (FIR) filter with a
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cutoff frequency of 30 Hz was applied to the data prior to event selection and epoching.

The deviant and standard beats (Fig. 1) were selected, epoched, and baseline corrected to

the 50-ms period preceding the beat.

EEG Artifact Rejection

Automatic artifact rejection with extreme values removed signals with voltages beyond

∓50 μV in event epochs. Manual artifact rejection (visual inspection) removed major artifacts

including eye blinks, mechanical disruptions, and irregular high-amplitude noise in the baseline

EEG data (Using the EEG Lab software, Delorme & Makeig, 2004).

N1-P2 Identification

By averaging across epochs, time-locked to the same type of event (in this case, a sound),

random noise that obscures the ERPs in raw data is smoothed out and the ERPs can be revealed. .

The N1 was then identified as the first prominent negative deflection that occurred around 100ms

post-stimulus and the P2 was identified as the positive deflection that followed the N1.

Spectral Analysis

EEG signals are also comprised of neural oscillations at a variety of frequencies. To study

this oscillatory activity, we employed a power spectral density analysis on baseline EEG data

using the channel spectra and maps tool in EEGLAB (Delorme and Makeig, 2004). EEGLAB’s

channel spectra function estimates the spectral density of data with Welch’s method (Welch,

1967). Welch’s method basically estimates the power spectral density curve from the EEG by



12

taking a sliding window of time bins and generating the average of the fast Fourier Transforms

(FFTs) across all windows.

Statistics

Statistical analysis was not performed to test significance due to the small sample size. If

we had collected data from more subjects, we would correlate the deviant-standard N1-P2

magnitude difference with solo tapping performance using Spearman’s correlation coefficient to

account for non-normally distributed and skewed VS scores. We would also correlate

participants’ individual gamma power (in two different bins, 30-50 and 50-80) with

deviant-standard N1-P2 magnitude difference to address our hypothesis that high-frequency

resting-state oscillatory activity in the gamma-band contributes to the generation of larger N1-P2

amplitude to unexpected stimuli. In addition, we would address our hypothesis regarding the

activational state of the cortex by examining the power of slow-wave activity with respect to the

N1-P2. Specifically, we would window the alpha power surrounding the alpha power peak

(typically at 10 Hz) in each subject and correlate that window with deviant-standard N1-P2

magnitude difference.

Expected Results

We expect that participants who generated a larger deviant-standard N1-P2 magnitude

difference would perform better in the solo tapping task, which was found in our previous

experiment (D'Andrea-Penna et al., 2020). We also expect that participants who generated a
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larger deviant-standard N1-P2 magnitude difference would exhibit more high-frequency

oscillatory activity during the resting periods of the passive listening task because more

concentrated attention, more activated brain states, and improved ability to process sensory

stimuli are characterized by lower amplitude, higher-frequency oscillatory activity (Moruzzi and

Magoun, 1949). We would, additionally, predict a negative correlation between deviant-standard

N1-P2 magnitude difference and alpha power, indicating that a desynchronized cortical state

leads to higher fidelity sensory coding.

Results

N1-P2 to Deviant and Standard Beats

To test if deviant beats elicit larger N1-P2 than standard beats, we analyzed the N1-P2

amplitude of the two types of beats. Consistent with dynamic attending theory (Jones and Boltz,

1989) and the concept of neural adaptability (Schafer, 1982), the N1-P2 magnitude to deviant

beats was larger than the N1-P2 to standard beats in both subjects. Statistical analysis was not

performed to test significance due to the small sample size.

VS

VS was used to quantify the participants' ability to tap with a consistent phase relative to

the driving beat. The participant that generated a larger deviant-standard N1-P2 magnitude

difference had a higher VS score of 0.96. The participant that generated a smaller
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deviant-standard N1-P2 magnitude difference had a lower VS score of 0.79. Statistical analysis

was not performed to test significance due to the small sample size.

Figure 2. N1-P2 complex (a negative deflection that occurs at around 100ms after the stimulus and the

following positive deflection) to expected (standard, shown in green) and unexpected (deviant, shown in blue) beats

in two of the three participants. The N1-P2 to unexpected beats is larger than that to expected beats in both

participants. The second participant generated a larger deviant-standard N1-P2 magnitude difference than the first

participant.
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Figure 3. VS scores of the two participants. The first participant had a VS score of 0.79. The second

participant had a VS score of 0.96. While the first participant showed a lot of variation in their tapping time relative

to the beats, the second participant consistently tapped in a constrained period before the beats.
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Spectral analysis

Without a large enough sample size, we were unable to find convincing evidence to

support our hypothesis that better synchronizers would exhibit more high-frequency oscillatory

activity during resting periods of the passive listening task. However, we found that the best

synchronizer among the three participants exhibited a distinctive lack of alpha frequency activity,

unlike the other two participants. This is consistent with a previous finding that alpha-band

activity negatively correlates with stimulus-specific information fidelity such that decreases in

alpha power are coupled with increases in stimulus-specific information (Griffiths et al., 2019).

Figure 4. Spectral density plot of baseline EEG data (Cz). Red trace represents the best synchronizer. A peak that

shows up at ~10Hz for the other two participants is distinctively not present in the red trace.

Discussion
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Our results show that the N1-P2 complex to deviant beats is generally larger than that to

standard beats and that a participant who generated a larger deviant-standard N1-P2 magnitude

difference performed better in the solo-tapping task than a participant who generated a smaller

deviant-standard N1-P2 magnitude difference. These are consistent with results from

D'Andrea-Penna et al. (2020), which report a significant positive correlation between

deviant-standard N1-P2 magnitude difference and performance in a solo-tapping task.

Interestingly, the best synchronizer among the three participants demonstrated a distinct lack of

an alpha peak that was noticeably present in the other two participants’ power spectral density

traces.

It is well-accepted among neuroscientists that oscillatory activity in the cortex is

desynchronized during wakefulness and REM sleep and is synchronized during idleness and

non-REM sleep. However, several recent studies on rodents and humans demonstrated that the

brain alternates frequently between smaller fluctuations of synchronized and desynchronized

states during the already “desynchronized” wakefulness. Researchers proposed that these

changes underlie mechanisms that provide a balance of external sensory information processing

and internal maintenance states during wakefulness (Harris and Thiele, 2011). It was also found

that selectively stimulating cortical cholinergic projections in wakeful mice led to further

desynchronization of cortical activity, more precise and rapid visual information encoding, and

changes in visual signal-to-noise ratio (Minces et al., 2017). In human subjects,

pharmacologically increasing acetylcholine in the cortex reduced oscillatory activity in the

alpha-band and improved subjects’ performance on a visual attention task (Bauer et al. 2012). In

addition, it was found that the effect of decreased alpha activity also manifests in the auditory
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system, as it led to an improved ability to ignore auditory distractors (Weisz et al., 2020). Lastly,

Griffiths et al. (2019) found that alpha-band activity negatively correlates with stimulus-specific

information fidelity, and decreases in alpha power are coupled with increases in stimulus-specific

information.

The lack of alpha peak that we found in the best synchronizer, who also exhibited the

largest deviant-standard N1-P2 difference, is consistent with the abovementioned findings and

the N1-P2 amplitude-performance correlation discovered in our previous experiment

(D'Andrea-Penna et al., 2020) in that a better performing (in a solo tapping task) cortex is

characterized by more desynchronized oscillatory activity and more exaggerated response to

unexpected stimuli (in simple passive listening) relative to cortices that perform more poorly.

However, due to the limited sample size, it would be inappropriate to infer that such a feature

would also be present in other good synchronizers. Therefore, the most obvious extension of this

project would be the collection of more data. This would enable us to correlate the

deviant-standard N1-P2 magnitude difference with solo tapping performance to further support

our previous findings and would also enable us to correlate participants’ individual gamma

power with the deviant-standard N1-P2 magnitude difference to properly address our hypothesis

that high-frequency resting-state oscillatory activity in the gamma-band contributes to the

generation of larger N1-P2 amplitude to unexpected stimuli. Our findings in this experiment

pointed us toward other potential features of a desynchronized/aroused cortex such as reduced

alpha power (Bauer et al., 2012; Griffiths et al., 2019; Weisz et al., 2020) and 1/f power spectral

density slope in the range from 30 to 45 Hz (Lendner et al., 2020). We expect to incorporate

analyses of these elements into future experiments. We might also want to test the same subjects
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on multiple occasions to see whether their cortical state and synchronization abilities are

transient or whether they represent a stable temporal phenotype.

If we do find that higher-frequency resting-state activity correlates with the generation of

higher amplitude N1-P2 complex, which is linked to better performance in the solo-tapping task,

we may be able to suggest that brain activational state is related to individual performance in

tasks that assess timing ability and that we may be able to improve timing ability by

manipulating brain state. We might also consider behavioral training regimens for fluidly

transitioning the cortex into an activated state to see whether it is possible to augment the

temporal phenotype of those who have both poorer detection of temporal features of the auditory

stream and the ability to rhythmically synchronize with a temporal pattern.
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